Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

PM2.5 poses a serious threat to human life and health, so the accurate prediction of PM2.5 concentration is essential for controlling air pollution. However, previous studies lacked the generalization ability to predict high-dimensional PM2.5 concentration time series. Therefore, a new model for predicting PM2.5 concentration was proposed to address this in this paper. Firstly, the linear rectification function with leakage (LeakyRelu) was used to replace the activation function in the Temporal Convolutional Network (TCN) to better capture the dependence of feature data over long distances. Next, the residual structure, dilated rate, and feature-matching convolution position of the TCN were adjusted to improve the performance of the improved TCN (LR-TCN) and reduce the amount of computation. Finally, a new prediction model (GRU-LR-TCN) was established, which adaptively integrated the prediction of the fused Gated Recurrent Unit (GRU) and LR-TCN based on the inverse ratio of root mean square error (RMSE) weighting. The experimental results show that, for monitoring station #1001, LR-TCN increased the RMSE, mean absolute error (MAE), and determination coefficient (R2) by 12.9%, 11.3%, and 3.8%, respectively, compared with baselines. Compared with LR-TCN, GRU-LR-TCN improved the index symmetric mean absolute percentage error (SMAPE) by 7.1%. In addition, by comparing the estimation results with other models on other air quality datasets, all the indicators have advantages, and it is further demonstrated that the GRU-LR-TCN model exhibits superior generalization across various datasets, proving to be more efficient and applicable in predicting urban PM2.5 concentration. This can contribute to enhancing air quality and safeguarding public health.

Details

Title
Prediction of PM2.5 Concentration Based on Deep Learning for High-Dimensional Time Series
Author
Hu, Jie 1   VIAFID ORCID Logo  ; Yuan Jia 2 ; Zhen-Hong, Jia 1 ; Cong-Bing He 1 ; Shi, Fei 1   VIAFID ORCID Logo  ; Xiao-Hui, Huang 1 

 School of Computer Science and Technology, Xinjiang University, Urumqi 830046, China; [email protected] (J.H.); [email protected] (C.-B.H.); [email protected] (F.S.); [email protected] (X.-H.H.); Xinjiang Uygur Autonomous Region Signal Detection and Processing Key Laboratory, Xinjiang University, Urumqi 830046, China 
 School of Statistics, Renmin University of China, Beijing 100872, China; [email protected] 
First page
8745
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3116645277
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.