Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In brain–computer interface (BCI) systems, motor imagery (MI) electroencephalogram (EEG) is widely used to interpret the human brain. However, MI classification is challenging due to weak signals and a lack of high-quality data. While deep learning (DL) methods have shown significant success in pattern recognition, their application to MI-based BCI systems remains limited. To address these challenges, we propose a novel deep learning algorithm that leverages EEG signal features through a two-branch parallel convolutional neural network (CNN). Our approach incorporates different input signals, such as continuous wavelet transform, short-time Fourier transform, and common spatial patterns, and employs various classifiers, including support vector machines and decision trees, to enhance system performance. We evaluate our algorithm using the BCI Competition IV dataset 2B, comparing it with other state-of-the-art methods. Our results demonstrate that the proposed method excels in classification accuracy, offering improvements for MI-based BCI systems.

Details

Title
Enhancing Motor Imagery Classification in Brain–Computer Interfaces Using Deep Learning and Continuous Wavelet Transform
Author
Xie, Yu 1   VIAFID ORCID Logo  ; Oniga, Stefan 2   VIAFID ORCID Logo 

 Faculty of Informatics, University of Debrecen, 4032 Debrecen, Hungary; [email protected] 
 Faculty of Informatics, University of Debrecen, 4032 Debrecen, Hungary; [email protected]; North University Center of Baia Mare, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania 
First page
8828
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3116650074
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.