Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The efficient detection of leakages in water distribution networks (WDNs) is crucial to ensuring municipal water supply safety and improving urban operations. Traditionally, machine learning methods such as Convolutional Neural Networks (CNNs) and Autoencoders (AEs) have been used for leakage detection. However, these methods heavily rely on local pressure information and often fail to capture long-term dependencies in pressure series. In this paper, we propose a transformer-based model for detecting leakages in WDNs. The transformer incorporates an attention mechanism to learn data distributions and account for correlations between historical pressure data and data from the same time on different days, thereby emphasizing long-term dependencies in pressure series. Additionally, we apply pressure data normalization across each leakage scenario and concatenate position embeddings with pressure data in the transformer model to avoid feature misleading. The performance of the proposed method is evaluated by using detection accuracy and F1-score. The experimental studies conducted on simulated pressure datasets from three different WDNs demonstrate that the transformer-based model significantly outperforms traditional CNN methods.

Details

Title
A Transformer-Based Approach to Leakage Detection in Water Distribution Networks
Author
Luo, Juan 1   VIAFID ORCID Logo  ; Wang, Chongxiao 2 ; Yang, Jielong 3 ; Zhong, Xionghu 1 

 Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China 
 Institute of High Performance Computing, Agency for Science, Technology and Research, Singapore 138632, Singapore; [email protected] 
 School of Internet of Things Engineering, Jiangnan University, Wuxi 214000, China; [email protected] 
First page
6294
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3116691821
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.