It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Peer-to-peer accommodation has gained prominence in the sharing economy and e-commerce sectors, with big data playing a crucial role in understanding customer preferences and evaluating homestay satisfaction. This study proposes a novel methodology that integrates Natural Language Processing (NLP) techniques, a Random Forest model, and Geographic Information System (GIS) functionalities to quantify the complex relationship between homestay satisfaction and diverse customer preferences. Notably, this study addresses the positive bias inherent in listing scores by segmenting homestays into three categories (satisfactory, moderate, and dissatisfactory) based on sentiment analysis from online reviews. Furthermore, this study not only identifies eight key determinants of homestay satisfaction but also unveils the nonlinear relationships and interactions between them. More significantly, we identify specific threshold values for geographic determinants, offering actionable recommendations for homestay planning and layout. These findings provide valuable insights that can be leveraged to improve homestay experiences and promote the sustainable development of urban homestays.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Shenyang Jianzhu University, School of Transportation and Geomatics Engineering, Shenyang, China (GRID:grid.443552.1) (ISNI:0000 0000 9634 1475)
2 Shenyang Agricultural University, College of Economics and Management, Shenyang, China (GRID:grid.412557.0) (ISNI:0000 0000 9886 8131)