It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Currently, polycyclic aromatic compounds in organic solar cells (OSCs) have gained substantial consideration in research communities due to their promising characteristics. Herein, polycyclic aromatic hydrocarbons (PAHs) core-based chromophores (TTFD1-TTFD6) were designed by structural modifications of peripheral acceptor groups into TTFR. The density functional theory (DFT) and time dependent density functional theory (TD-DFT) calculations were carried out at B3LYP/6-311G (d, p) functional to explore insights for their structural, electronic, and photonic characteristics. The structural modulation unveiled notable electronic impact on the HOMO and LUMO levels across all derivatives, leading to decreased band gaps. All the designed compounds exhibited band gap ranging from 2.246 to 1.957 eV, along with wide absorption spectra of 897.071-492.274 nm. An elevated exciton dissociation rate was observed due to the lower binding energy values (Eb = 0.381 to 0.365 eV) calculated in the derivatives compared to the reference (Eb = 0.394 eV). Furthermore, data from the transition density matrix (TDM) and density of states (DOS) also corroborated the effective charge transfer process. Comparable results of Voc for reference and designed chromophores were obtained via HOMOdonor−LUMOPC71BM. The declining Voc order values was noted as TTFD5 > TTFD6 > TTFD4 > TTFD3 > TTFD2 > TTFD1 > TTFR. Interestingly, TTFD5 was found with the smallest energy gap and highest absorption value, resulting in better charge transference among all the derivatives. The results illustrated that the modification in indenofluorene based chromophores with end-capped small acceptors proved to be a significant approach in achieving favorable photovoltaic properties.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Khwaja Fareed University of Engineering & Information Technology, Institute of Chemistry, Rahim Yar Khan, Pakistan (GRID:grid.510450.5); Khwaja Fareed University of Engineering & Information Technology, Centre for Theoretical and Computational Research, Rahim Yar Khan, Pakistan (GRID:grid.510450.5)
2 Universidade de São Paulo, Departamento de Química Fundamental, Instituto de Química, São Paulo, Brazil (GRID:grid.11899.38) (ISNI:0000 0004 1937 0722)
3 King Saud University, Department of Chemistry, College of Science, Riyadh, Saudi Arabia (GRID:grid.56302.32) (ISNI:0000 0004 1773 5396)
4 The Affiliated Hospital of Southwest Medical University, Department of Infectious Diseases, Luzhou, China (GRID:grid.488387.8)