Abstract

Metal nanoparticle exsolution from metal oxide hosts has recently garnered great attention to improve the performance of energy conversion and storage devices. In this study, the nickel exsolution mechanisms in a vertically aligned nanostructure (VAN) thin film of heteroepitaxial (Sr0.9Pr0.1)0.9Ti0.9Ni0.1O3−δ-Ce0.9Gd0.1O1.95 with a columnar architecture was investigated for the first time. Experimental results and Density Functional Theory (DFT) calculations reveal that the multiple vertical interphases in a VAN with a hierarchical arrangement provide faster and more selective Ni diffusion pathways to the surface than traditional bulk diffusion in epitaxial films. Kinetic studies conducted at different temperatures and times indicate that the nucleation process of the exsolved metal nanoparticles primarily takes place at the surface through the phase boundaries of the columns. The vertical strain is crucial in preserving the film’s microstructure, yielding a robust heteroepitaxial architecture after reduction. This innovative heteromaterial opens up new possibilities for designing efficient devices through advanced structural engineering to achieve controlled nanoparticle formation.

Exsolved Nickel nanoparticles enhance the performance in energy conversion devices. Here, we report a nanoengineered vertically aligned nanostructure (VAN) that provides faster and more selective paths for Ni diffusion compared to traditional films.

Details

Title
Hierarchical exsolution in vertically aligned heterostructures
Author
Zamudio-García, Javier 1 ; Chiabrera, Francesco 2   VIAFID ORCID Logo  ; Morin-Martínez, Armando 2   VIAFID ORCID Logo  ; Castelli, Ivano E. 2   VIAFID ORCID Logo  ; Losilla, Enrique R. 3   VIAFID ORCID Logo  ; Marrero-López, David 4   VIAFID ORCID Logo  ; Esposito, Vincenzo 2   VIAFID ORCID Logo 

 Technical University of Denmark, Department of Energy Conversion and Storage, Lyngby, Denmark (GRID:grid.5170.3) (ISNI:0000 0001 2181 8870); Universidad de Málaga, Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Málaga, Spain (GRID:grid.10215.37) (ISNI:0000 0001 2298 7828) 
 Technical University of Denmark, Department of Energy Conversion and Storage, Lyngby, Denmark (GRID:grid.5170.3) (ISNI:0000 0001 2181 8870) 
 Universidad de Málaga, Dpto. de Química Inorgánica, Cristalografía y Mineralogía, Málaga, Spain (GRID:grid.10215.37) (ISNI:0000 0001 2298 7828) 
 Universidad de Málaga, Dpto. de Física Aplicada I, Málaga, Spain (GRID:grid.10215.37) (ISNI:0000 0001 2298 7828) 
Pages
8961
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3117780762
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.