It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Classifying malicious traffic, which can trace the lineage of attackers’ malicious families, is fundamental to safeguarding cybersecurity. However, the deep learning approaches currently employed require substantial volumes of data, conflicting with the challenges in acquiring and accurately labeling malicious traffic data. Additionally, edge network devices vulnerable to cyber-attacks often cannot meet the computational demands required to deploy deep learning models. The rapid mutation of malicious activities further underscores the need for models with strong generalization capabilities to adapt to evolving threats. This paper introduces an innovative few-shot malicious traffic classification method that is precise, lightweight, and exhibits enhanced generalization. By refining traditional transfer learning, the source model is segmented into public and private feature extractors for stepwise transfer, enhancing parameter alignment with specific target tasks. Neuron importance is then sorted based on the task of each feature extractor, enabling precise pruning to create an optimal lightweight model. An adversarial network guiding principle is adopted for retraining the public feature extractor parameters, thus strengthening the model’s generalization power. This method achieves an accuracy of over 97% on few-shot datasets with no more than 15 samples per class, has fewer than 50 K model parameters, and exhibits superior generalization compared to baseline methods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Systems Engineering, Academy of Military Sciences, PLA, Beijing, China (GRID:grid.500274.4)




