It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In order to solve the influence of the complex interaction relationships among subjects on the system solution accuracy and speed of the Multi-Microgrid system under the high penetration rate of new energy. Firstly, the paper establishes the bi-level optimal scheduling Stackelberg game model based on shared energy storage, considering the inter-subject interaction in MMG. Subsequently, based on the four improvement methods of Chaotic Map, Quantum Behavior, Gaussian Distribution, and Nonlinear Control Strategy, the Chaotic Gaussian Quantum Crayfish Optimization Algorithm is proposed to solve the optimization scheduling model. The improved algorithm exhibits superior initial solutions and enhanced search capability. In comparison to the original algorithm, the relative errors of the CGQCOA optimization outcomes are 98%, 20.96%, 98.74% and 16.55%, respectively, enhancing the model-solving accuracy and the speed of convergence to the optimal solution. Finally, the simulation demonstrates that the revenue of Microgrid 1, Microgrid 2, and Microgrid 3 have increased by 0.73%, 1.17%, and 1.04%, respectively. Concurrently, the penalty cost of pollutant emission has decreased by 5.9%, 11.5%, and 12.68%, respectively. Furthermore, the revenue of the shared storage have increased by 1.91%. These findings validate the efficacy of the methodology proposed in enhancing the revenue of the various subjects and reducing pollutant gas emission.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Shihezi University, College of Mechanical and Electrical Engineering, Shihezi, China (GRID:grid.411680.a) (ISNI:0000 0001 0514 4044); Xinjiang Production and Construction Corps Key Laboratory of Modern Agricultural Machinery, Shihezi, China (GRID:grid.411680.a); Key Laboratory of Northwest Agricultural Equipment, Ministry of Agriculture and Rural Affairs, Shihezi, China (GRID:grid.418524.e) (ISNI:0000 0004 0369 6250)