Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purpose: To develop and validate machine learning models for predicting the length of stay (LOS) in the Pediatric Intensive Care Unit (PICU) using data from the Virtual Pediatric Systems (VPS) database. Methods: A retrospective study was conducted utilizing machine learning (ML) algorithms to analyze and predict PICU LOS based on historical patient data from the VPS database. The study included data from over 100 North American PICUs spanning the years 2015–2020. After excluding entries with missing variables and those indicating recovery from cardiac surgery, the dataset comprised 123,354 patient encounters. Various ML models, including Support Vector Machine, Stochastic Gradient Descent Classifier, K-Nearest Neighbors, Decision Tree, Gradient Boosting, CatBoost, and Recurrent Neural Networks (RNNs), were evaluated for their accuracy in predicting PICU LOS at thresholds of 24 h, 36 h, 48 h, 72 h, 5 days, and 7 days. Results: Gradient Boosting, CatBoost, and RNN models demonstrated the highest accuracy, particularly at the 36 h and 48 h thresholds, with accuracy rates between 70 and 73%. These results far outperform traditional statistical and existing prediction methods that report accuracy of only around 50%, which is effectively unusable in the practical setting. These models also exhibited balanced performance between sensitivity (up to 74%) and specificity (up to 82%) at these thresholds. Conclusions: ML models, particularly Gradient Boosting, CatBoost, and RNNs, show moderate effectiveness in predicting PICU LOS with accuracy slightly over 70%, outperforming previously reported human predictions. This suggests potential utility in enhancing resource and staffing management in PICUs. However, further improvements through training on specialized databases can potentially achieve better accuracy and clinical applicability.

Details

Title
Pediatric Intensive Care Unit Length of Stay Prediction by Machine Learning
Author
Ganatra, Hammad A 1   VIAFID ORCID Logo  ; Latifi, Samir Q 2 ; Baloglu, Orkun 2 

 Division of Pediatric Critical Care, Cleveland Clinic Children’s, Cleveland, OH 44195, USA; [email protected] (S.Q.L.); [email protected] (O.B.) 
 Division of Pediatric Critical Care, Cleveland Clinic Children’s, Cleveland, OH 44195, USA; [email protected] (S.Q.L.); [email protected] (O.B.); Division of Cardiology and Cardiovascular Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA 
First page
962
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23065354
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120590297
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.