Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

At a time when the botanical origin of honey is being increasingly falsified, there is a need to find a quick, cheap and simple method of identifying its origin. Therefore, the aim of our work was to show that fluorescence spectrometry, together with statistical analysis, can be such a method. In total, 108 representative samples with 10 different botanic origins (9 unifloral and 1 multifloral), obtained in 2020–2022 from local apiaries, were analyzed. The fluorescence spectra of those samples were determined using a F-7000 Hitachi fluorescence spectrophotometer, Tokyo, Japan. It is shown that each honey variety produces a unique emission spectrum, which allows for the determination of its botanical origin. Taking into account the difficulties in analyzing these spectra, it was found that the most information regarding botanical differences and their identification is provided by synchronous cross-sections of these spectra obtained at Δλ = 100 nm. In addition, this analysis was supported by discriminant and canonical analysis, which allowed for the creation of mathematical models, allowing for the correct classification of each type of honey (except dandelion) with an accuracy of over 80%. The application of the method is universal (in accordance with the methodology described in this paper), but its use requires the creation of fluorescence spectral matrices (EEG) characteristic of a given geographical and botanical origin.

Details

Title
The Use of Fluorescence Spectrometry Combined with Statistical Tools to Determine the Botanical Origin of Honeys
Author
Wilczyńska, Aleksandra  VIAFID ORCID Logo  ; Żak, Natalia  VIAFID ORCID Logo 
First page
3303
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120634013
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.