Full Text

Turn on search term navigation

© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In the context of global climate change, the frequency of sudden natural disasters is increasing. Assessing traffic road damage post-disaster is crucial for emergency decision-making and disaster management. Traditional ground observation methods for evaluating traffic road damage are limited by the timeliness and coverage of data updates. Relying solely on these methods does not adequately support rapid assessment and emergency management during extreme natural disasters. Social media, a major source of big data, can effectively address these limitations by providing more timely and comprehensive disaster information. Motivated by this, we utilized multi-source heterogeneous data to assess the damage to traffic roads under extreme conditions and established a new framework for evaluating traffic roads in cities prone to flood disasters caused by rainstorms. The approach involves several steps: First, the surface area affected by precipitation is extracted using a threshold method constrained by confidence intervals derived from microwave remote sensing images. Second, disaster information is collected from the Sina Weibo platform, where social media information is screened and cleaned. A quantification table for road traffic loss assessment was defined, and a social media disaster information classification model combining text convolutional neural networks and attention mechanisms (TextCNN-Attention disaster information classification) was proposed. Finally, traffic road information on social media is matched with basic geographic data, the classification of traffic road disaster risk levels is visualized, and the assessment of traffic road disaster levels is completed based on multi-source heterogeneous data. Using the “7.20” rainstorm event in Henan Province as an example, this research categorizes the disaster’s impact on traffic roads into five levels—particularly severe, severe, moderate, mild, and minimal—as derived from remote sensing image monitoring and social media information analysis. The evaluation framework for flood disaster traffic roads based on multi-source heterogeneous data provides important data support and methodological support for enhancing disaster management capabilities and systems.

Details

Title
Feasibility of Emergency Flood Traffic Road Damage Assessment by Integrating Remote Sensing Images and Social Media Information
Author
Zhu, Hong 1 ; Meng, Jian 2 ; Yao, Jiaqi 3   VIAFID ORCID Logo  ; Xu, Nan 4   VIAFID ORCID Logo 

 College of Ecology and Environment, Institute of Disaster Prevention, Beijing 101601, China; [email protected] 
 School of Earth Sciences and Engineering, Institute of Disaster Prevention, Beijing 101601, China; Beijing Disaster Prevention Science and Technology, Co., Ltd., Beijing 101100, China 
 Hebei Key Laboratory of Resource and Environmental Disaster Mechanism and Risk Monitoring, Sanhe 065201, China; [email protected]; Academy of Eco-Civilization Development for Jing-Jin-Ji Megalopolis, Tianjin Normal University, Tianjin 300387, China 
 College of Geography and Remote Sensing, Hohai University, Nanjing 210024, China; [email protected] 
First page
369
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120638374
Copyright
© 2024 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.