Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper aims to outline the effectiveness of modern universal gate quantum computers when utilizing different configurations to solve the B-SAT (Boolean satisfiability) problem. The quantum computing experiments were performed using Grover’s search algorithm to find a valid solution. The experiments were performed under different variations to demonstrate their effects on the results. Changing the number of shots, qubit mapping, and using a different quantum processor were all among the experimental variables. The study also branched into a dedicated experiment highlighting a peculiar behavior that IBM quantum processors exhibit when running circuits with a certain number of shots.

Details

Title
Solving the B-SAT Problem Using Quantum Computing: Smaller Is Sometimes Better
Author
Bennakhi, Ahmad  VIAFID ORCID Logo  ; Byrd, Gregory T  VIAFID ORCID Logo  ; Franzon, Paul  VIAFID ORCID Logo 
First page
875
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120638402
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.