Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In metal additive manufacturing, reusing collected powder from previous builds is a standard practice driven by the substantial cost of metal powder. This approach not only reduces material expenses but also contributes to sustainability by minimizing waste. Despite its benefits, powder reuse introduces challenges related to maintaining the structural integrity of the components, making it a critical area of ongoing research and innovation. The reuse process can significantly alter powder characteristics, including flowability, size distribution, and chemical composition, subsequently affecting the microstructures and mechanical properties of the final components. Achieving repeatable and consistent printing outcomes requires powder particles to maintain specific and consistent physical and chemical properties. Variations in powder characteristics can lead to inconsistencies in the microstructural features of printed components and the formation of process-induced defects, compromising the quality and reliability of the final products. Thus, optimizing the powder recovery and reuse methodology is essential to ensure that cost reduction and sustainability benefits do not compromise product quality and reliability. This study investigated the impact of powder reuse and particle size distribution on the microstructural and mechanical properties of Ti-6Al-4V specimens fabricated using a laser beam directed energy deposition technique. Detailed evaluations were conducted on reused powders with two different size distributions, which were compared with their virgin counterparts. Microstructural features and process-induced defects were examined using scanning electron microscopy and X-ray computed tomography. The findings reveal significant alterations in the elemental composition of reused powder, with distinct trends observed for small and large particles. Additionally, powder reuse substantially influenced the formation of process-induced defects and, consequently, the fatigue performance of the components.

Details

Title
Effects of Powder Reuse and Particle Size Distribution on Structural Integrity of Ti-6Al-4V Processed via Laser Beam Directed Energy Deposition
Author
Mahtabi, MohammadBagher 1   VIAFID ORCID Logo  ; Yadollahi, Aref 1 ; Morgan-Barnes, Courtney 2 ; Priddy, Matthew W 2   VIAFID ORCID Logo  ; Rhee, Hongjoo 2   VIAFID ORCID Logo 

 Department of Mechanical and Civil Engineering, Purdue University Northwest, Hammond, IN 46326, USA 
 Michael W. Hall School of Mechanical Engineering, Mississippi State University, Starkville, MS 39762, USA; Center for Advanced Vehicular Systems (CAVS), Mississippi State University, Starkville, MS 39759, USA 
First page
209
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
25044494
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120674094
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.