Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chinese megacities face significant challenges in reducing carbon emissions while balancing economic growth and social welfare. This study constructs an innovative multi-objective optimization model, the SD-NSGA-III model, integrated with a System Dynamics (SD) model and using the Non-dominated Sorting Genetic Algorithm III (NSGA-III) to optimize resource allocation in Beijing. The model targets environmental, economic, and social goals by establishing a water–land–energy–carbon (WLEC) nexus for analyzing resource allocation strategies and carbon reduction pathways under various constraints. Scenario simulations under the efficiency-oriented scenario indicated a potential reduction in energy carbon emissions of 81.4% by 2030. The fairness-oriented scenario revealed significant trade-offs between equity and emission reductions, emphasizing the need for balanced strategies. Introducing constraints on resources and economic growth significantly reduced median energy carbon emissions to 80 million tons by 2030. These findings demonstrate the effectiveness of the SD-NSGA-III model in providing actionable strategies for achieving carbon neutrality and sustainable development in cities.

Details

Title
Optimized Resource Allocation for Sustainable Development in Beijing: Integrating Water, Land, Energy, and Carbon Nexus
Author
Gao, Yanning 1 ; Shi, Xiaowen 1 ; Zhang, Haozhe 2 ; Tang, Renwu 3 

 School of Design and the Built Environment, Curtin University, Perth 6102, Australia; [email protected]; School of Government, Beijing Normal University, Beijing 100875, China 
 School of Economics and Management, Wuhan University, Wuhan 430072, China 
 School of Government, Beijing Normal University, Beijing 100875, China 
First page
1723
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2073445X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120682333
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.