Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Molybdenum is an important material in modern industry, widely used in extreme environments such as rocket engine nozzles and microelectrodes due to its high melting point, excellent mechanical properties, and thermal conductivity. However, as a difficult-to-machine metal, traditional machining methods struggle to achieve the desired microstructures in molybdenum. Electrochemical machining (ECM) offers unique advantages in manufacturing fine structures from hard-to-machine metals. Studies have shown that molybdenum exhibits a fast corrosion rate in alkaline or acidic solutions, posing significant environmental pressure. Therefore, this study investigates the electrochemical machining of molybdenum in neutral salt solutions to achieve high-precision microstructure fabrication. First, the polarization curves and electrochemical impedance spectroscopy (EIS) of molybdenum in NaNO3 solutions of varying concentrations were measured to determine its electrochemical reaction characteristics. The results demonstrate that molybdenum exhibits good electrochemical reactivity in NaNO3 solutions, leading to favorable surface erosion morphology. Subsequently, a mask electrochemical machining technique was employed to fabricate arrayed microstructures on the molybdenum surface. To minimize interference between factors, an orthogonal experiment was used to optimize the parameter combination, determining the optimal machining process parameters. Under these optimal conditions, an array of micro-groove structures was successfully fabricated with an average groove width of 110 μm, a depth-to-width ratio of 0.21, an aspect ratio of 9000, and a groove width error of less than 5 μm.

Details

Title
Precision Electrochemical Micro-Machining of Molybdenum in Neutral Salt Solution Based on Electrochemical Analysis
Author
Wu, Yuqi; Wang, Guoqian; Yang, Moucun; Zhang, Yan
First page
1191
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120791689
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.