Full text

Turn on search term navigation

© 2024 Agrawal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dengue viral infection is caused by the Dengue virus, which spreads to humans through the bite of infected mosquitos. Dengue affects over half of the global population, with an estimated 500 million infections per year. Despite this, no effective treatment is currently available, however, several promising candidates are undergoing pre-clinical/clinical testing. The existence of four major serotypes is an important challenge in the development of drugs and vaccines to combat Dengue virus infection. Hence, the drug/vaccine thereby developed should neutralize all the four serotypes equally. However, there is no pan-serotype specific treatment for Dengue virus, thereby emphasizing the need for the identification of novel drug-like compounds that can target all serotypes of the Dengue virus equally. To this end, we employed virtual screening methodologies to find drug-like compounds that target the domain III of glycoprotein E. Most importantly, domain III of E protein is involved in viral fusion with the host membrane and is also targeted by neutralizing antibodies. Our study found two small molecule drug-like compounds (out of the 3 million compounds screened) having similar binding affinity with all four serotypes. The compounds thereby identified exhibit favourable drug like properties and can be developed as a treatment for Dengue virus.

Details

Title
Structure-based identification of small-molecule inhibitors that target the DIII domain of the Dengue virus glycoprotein E pan-serotypically
Author
Agrawal, Prakhar; Arya, Hemant; Ganesan, Senthil Kumar  VIAFID ORCID Logo 
First page
e0311548
Section
Research Article
Publication year
2024
Publication date
Oct 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3120835593
Copyright
© 2024 Agrawal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.