It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
White tea is valuable for having a high antioxidant content, which is considered to possess numerous beneficial effects on health. This study investigated the application of microwave-assisted extraction (MAE) for the extraction of total phenolic compounds from white tea. The experimental setup included four independent variables: microwave power (ranging from 100 to 300 W), extraction time (ranging from 10 to 40 min), temperature (ranging from 35 to 50 °C), and the ratio of food to solvent (ranging from 0.25 to 0.5 g/10 mL). The responses that were evaluated were IC50 (ppm) and total phenolic content (mg/g). The experimental design consisted of thirty runs conducted within the MAE system. The group method of data handling (GMDH) models were used to predict important efficiency measures (IC50 and total phenol content) in the extraction process. The models were assessed based on their ability to capture the relationships between input conditions and efficiency outputs. Three GMDH variants were compared: baseline GMDH, GMDH optimized with a genetic algorithm (GMDH-GA), and GMDH optimized with a harmony search algorithm (GMDH-HS). While all models achieved high predictive ability on a test set, GMDH-HS emerged as the superior performer. It achieved near-perfect agreement with observations (d-index > 0.998), minimal errors (NRMSE < 0.02), and effectively captured data variance (NSE > 0.99) for both outputs. Correlation diagrams and Taylor diagrams confirmed the superior performance of GMDH-HS in terms of linearity, correlation, and error minimization. This study demonstrates the effectiveness of hybridizing GMDH with a harmony search algorithm for complex modeling tasks, paving the way for improved efficiency and yield optimization in extraction processes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Zabol, Department of Chemistry, Faculty of Science, Zabol, Iran (GRID:grid.412671.7) (ISNI:0000 0004 0382 462X)
2 University of Zabol, Department of Water Engineering, Faculty of Water and Soil, Zabol, Iran (GRID:grid.412671.7) (ISNI:0000 0004 0382 462X)
3 Istanbul Technical University, Department of Chemistry, Faculty of Science & Letters, Istanbul, Türkiye (GRID:grid.10516.33) (ISNI:0000 0001 2174 543X); The Scientific and Technological Research Council of Türkiye, National Metrology Institute, Organic Chemistry Laboratories, Chemistry Group, Gebze, Türkiye (GRID:grid.426409.d) (ISNI:0000 0001 0685 2712)