It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Motor imagery electroencephalography (EEG) analysis is crucial for the development of effective brain-computer interfaces (BCIs), yet it presents considerable challenges due to the complexity of the data and inter-subject variability. This paper introduces EEGCCT, an application of compact convolutional transformers designed specifically to improve the analysis of motor imagery tasks in EEG. Unlike traditional approaches, EEGCCT model significantly enhances generalization from limited data, effectively addressing a common limitation in EEG datasets. We validate and test our models using the open-source BCI Competition IV datasets 2a and 2b, employing a Leave-One-Subject-Out (LOSO) strategy to ensure subject-independent performance. Our findings demonstrate that EEGCCT not only outperforms conventional models like EEGNet in standard evaluations but also achieves better performance compared to other advanced models such as Conformer, Hybrid s-CViT, and Hybrid t-CViT, while utilizing fewer parameters and achieving an accuracy of 70.12%. Additionally, the paper presents a comprehensive ablation study that includes targeted data augmentation, hyperparameter optimization, and architectural improvements.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Nazarbayev University, Institute of Smart Systems and Artificial Intelligence (ISSAI), Astana, Kazakhstan (GRID:grid.428191.7) (ISNI:0000 0004 0495 7803)
2 Nazarbayev University, Department of Computer Science, Astana, Kazakhstan (GRID:grid.428191.7) (ISNI:0000 0004 0495 7803)
3 Nazarbayev University, Department of Robotics Engineering, Astana, Kazakhstan (GRID:grid.428191.7) (ISNI:0000 0004 0495 7803)