Full text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The US–German GRACE (Gravity Recovery and Climate Experiment, 2002–2017) and GRACE-FO (GRACE Follow-On, since 2018) satellite missions observe terrestrial water storage (TWS) variations. Over 20 years of data allow for investigating interannual variations beyond linear trends and seasonal signals. However, the origin of observed TWS changes cannot be determined solely with GRACE and GRACE-FO observations. This study focuses on the northern part of the East African Rift around the lakes of Turkana, Victoria, and Tanganyika. It aims to characterise and analyse the interannual TWS variations compared to meteorological and geodetic observations of the water storage compartments (surface water, soil moisture, and groundwater).

We apply the STL (Seasonal-Trend decomposition using LOESS) method to decompose the signal into a seasonal signal, an interannual signal, and residuals. By clustering the interannual TWS dynamics for the African continent, we define the exact outline of the study region.

We observe a TWS decrease until 2006, followed by a steady rise until 2016, and then the most significant TWS gain in Africa in 2019 and 2020. Besides meteorological variability, surface water storage variations in the lakes explain large parts of the TWS decrease before 2006. The storage dynamics of Lake Victoria alone contribute up to 50 % of these TWS changes. On the other hand, the significant TWS increase around 2020 can be attributed to nearly equal rises in groundwater and surface water storage, which coincide with a substantial precipitation surplus. Soil moisture explains most of the seasonal variability but does not influence the interannual variations.

As Lake Victoria dominates the surface water storage variations in the region, we further investigate the lake and the downstream Nile River. The Nalubaale Dam regulates Lake Victoria's outflow. Water level observations from satellite altimetry reveal the impact of dam operations on downstream discharge and on TWS decreases in the drought years before 2006. On the other hand, we do not find evidence for an impact of the Nalubaale Dam regulations on the strong TWS increase after 2019.

Details

Title
Interannual variations of terrestrial water storage in the East African Rift region
Author
Boergens, Eva 1   VIAFID ORCID Logo  ; Güntner, Andreas 2   VIAFID ORCID Logo  ; Sips, Mike 1 ; Schwatke, Christian 3   VIAFID ORCID Logo  ; Dobslaw, Henryk 1   VIAFID ORCID Logo 

 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 
 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany; University of Potsdam, Institute of Environmental Sciences and Geography, 14469 Potsdam, Germany 
 Technical University of Munich, School of Engineering & Design, Department of Aerospace & Geodesy, Deutsches Geodätisches Forschungsinstitut (DGFI-TUM), Arcisstraße 21, 80333 Munich, Germany 
Pages
4733-4754
Publication year
2024
Publication date
2024
Publisher
Copernicus GmbH
ISSN
10275606
e-ISSN
16077938
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3121510631
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.