Full Text

Turn on search term navigation

© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aspergillus fumigatus is the predominant mould pathogen for humans. Adaption to host-imposed iron limitation has previously been demonstrated to be essential for its virulence. [2Fe-2S] clusters are crucial as cofactors of several metabolic pathways and mediate cytosolic/nuclear iron sensing in fungi including A. fumigatus. [2Fe-2S] cluster trafficking has been shown to involve BolA family proteins in both mitochondria and the cytosol/nucleus. Interestingly, both A. fumigatus homologues, termed Boll and Bol3, possess mitochondrial targeting sequences, suggesting the lack of cytosolic/nuclear versions. Here, we show by the combination of mutational, proteomic and fluorescence microscopic analyses that expression of the Bol3 encoding gene leads to dual localization of gene products to mitochondria and the cytosol/nucleus via alternative translation initiation downstream of the mitochondrial targeting sequence, which appears to be highly conserved in various Aspergillus species. Lack of either mitochondrial Boll or Bol3 was phenotypically inconspicuous while lack of cytosolic/nuclear Bol3 impaired growth during iron limitation but not iron sensing which indicates a particular importance of [2Fe-2S] cluster trafficking during iron limitation. Remarkably, cytosolic/nuclear Bol3 differs from the mitochondrial version only by N-terminal acetylation, a finding that was only possible by mutational hypothesis testing.

Details

Title
The cytosolic form of dual localized BolA family protein Bol3 is important for adaptation to iron starvation in Aspergillus fumigatus
Author
Oberegger, Simon 1 ; Misslinger, Matthias 1 ; Faserl, Klaus 2 ; Sarg, Bettina 2 ; Farhan, Messo 3 ; Haas, Hubertus

 Institute of Molecular Biology, Biocenter 
 Institute of Medical Biochemistry, Biocenter 
 Institute of Pathophysiology, Biocenter, Medical University Innsbruck, Innsbruck, Austria 
Pages
1-14
Section
Research
Publication year
2024
Publication date
2024
Publisher
The Royal Society Publishing
e-ISSN
20462441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3121538806
Copyright
© 2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.