It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The genomic signature of an organism captures the characteristics of repeated oligonucleotide patterns in its genome 1, such as oligomer frequencies, GC content, and differences in codon usage. Viruses, however, are obligate intracellular parasites that are dependent on their host cells for replication, and information about genomic signatures in viruses has hitherto been sparse.
Here, we investigate the presence and specificity of genomic signatures in 2,768 eukaryotic viral species from 105 viral families, aiming to illuminate dependencies and selective pressures in viral genome evolution. We demonstrate that most viruses have highly specific genomic signatures that often also differ significantly between species within the same family. The species-specificity is most prominent among dsDNA viruses and viruses with large genomes. We also reveal consistent dissimilarities between viral genomic signatures and those of their host cells, although some viruses present slight similarities, which may be explained by genetic adaptation to their native hosts. Our results suggest that significant evolutionary selection pressures act upon viral genomes to shape and preserve their genomic signatures, which may have implications for the field of synthetic biology in the construction of live attenuated vaccines and viral vectors.
Genomic analysis of 2,768 viral species reveals conserved and distinct genome-wide differences in specific oligonucleotide patterns, so-called genomic signatures. These are likely caused by various selection pressures acting on viral genomes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 University of Gothenburg, Department of Infectious Diseases, Section for Clinical Virology, Institute of Biomedicine, Gothenburg, Sweden (GRID:grid.8761.8) (ISNI:0000 0000 9919 9582)
2 Czech Academy of Sciences, Laboratory of Molecular Biology and Bioinformatics, Institute of Botany, Prague, Czechia (GRID:grid.418095.1) (ISNI:0000 0001 1015 3316)
3 Chalmers University of Technology, Department of Computer Science, Gothenburg, Sweden (GRID:grid.5371.0) (ISNI:0000 0001 0775 6028)