It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The use of conductive and corrosion-resistant protective layers represents a key strategy for improving the durability of light absorber materials in photoelectrochemical water splitting. For high performance photoanodes such as Si, GaAs, and GaP, amorphous TiO2 protective overlayers, deposited by atomic layer deposition, are conductive for holes via a defect band in the TiO2. However, when coated on simply prepared, low-cost photoanodes such as metal oxides, no charge transfer is observed through amorphous TiO2. Here, we report a hybrid polyethyleneimine/TiO2 layer that facilitates hole transfer from model oxides BiVO4 and Fe2O3, enabling access to a broader scope of available materials for practical water oxidation. A thin polyethyleneimine layer between the light absorber and the hybrid polyethyleneimine/TiO2 acts as a hole-selective interface, improving the optoelectronic properties of the photoanode devices. These polyethyleneimine/TiO2 modified photoanodes exhibit high photostability for solar water oxidation over 400 h.
This study presents a hybrid polyethyleneimine/TiO2 protective layer as a low-cost photoanode for solar water oxidation. The hybrid layer facilitates hole transfer from the photoanode and results in high photostability over 400 hours.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 University of Zurich, Department of Chemistry, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650); Ulsan National Institute of Science and Technology (UNIST), School of Energy and Chemical Engineering, Ulsan, Republic of Korea (GRID:grid.42687.3f) (ISNI:0000 0004 0381 814X)
2 University of Zurich, Department of Chemistry, Zurich, Switzerland (GRID:grid.7400.3) (ISNI:0000 0004 1937 0650)
3 Ulsan National Institute of Science and Technology (UNIST), School of Energy and Chemical Engineering, Ulsan, Republic of Korea (GRID:grid.42687.3f) (ISNI:0000 0004 0381 814X)
4 Ulsan National Institute of Science and Technology (UNIST), School of Energy and Chemical Engineering, Ulsan, Republic of Korea (GRID:grid.42687.3f) (ISNI:0000 0004 0381 814X); Ulsan National Institute of Science and Technology (UNIST), Center for Renewable Carbon, Ulsan, Republic of Korea (GRID:grid.42687.3f) (ISNI:0000 0004 0381 814X)