It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Seawater electrolysis using renewable electricity offers an attractive route to sustainable hydrogen production, but the sluggish electrode kinetics and poor durability are two major challenges. We report a molybdenum nitride (Mo2N) catalyst for the hydrogen evolution reaction with activity comparable to commercial platinum on carbon (Pt/C) catalyst in natural seawater. The catalyst operates more than 1000 hours of continuous testing at 100 mA cm−2 without degradation, whereas massive precipitate (mainly magnesium hydroxide) forms on the Pt/C counterpart after 36 hours of operation at 10 mA cm−2. Our investigation reveals that ammonium groups generate in situ at the catalyst surface, which not only improve the connectivity of hydrogen-bond networks but also suppress the local pH increase, enabling the enhanced performances. Moreover, a zero-gap membrane flow electrolyser assembled by this catalyst exhibits a current density of 1 A cm−2 at 1.87 V and 60 oC in simulated seawater and runs steadily over 900 hours.
Efficient catalysts for seawater electrolysis are crucial for sustainable hydrogen production but struggle with slow kinetics and low durability. Here, the authors report a molybdenum nitride catalyst that in situ generates ammonium groups, enhancing both performance and stability in natural seawater.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 University of Science and Technology of China, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, China (GRID:grid.59053.3a) (ISNI:0000 0001 2167 9639)
2 Hefei University of Technology, School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Anhui Province Engineering Research Center of Flexible and Intelligent Materials, Hefei, China (GRID:grid.256896.6) (ISNI:0000 0001 0395 8562)