It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A computational method is employed to solve heat transfer and entropy generation within a circular pipe. The thermal boundary condition assumes a constant wall temperature, while viscosity is taken to be dependent on temperature. A power-law type shear-thinning fluid is utilized in the analysis, with sinusoidal vibration applied horizontally perpendicular to the flow direction. Temperature distributions across the pipe are illustrated. Additionally, the entropy generation rate over the entire fluid volume under vibration was examined, comparing the results between steady flow and vibrational flow for both types of fluids. It was found that radial mixing is more pronounced in non-Newtonian fluids as vibration increases the strain rate, which is higher for low Reynolds numbers. The research provides a quantitative analysis of heat transfer and entropy generation for both Newtonian and shear-thinning fluids at different Reynolds numbers. It was observed that the effectiveness of superimposed vibrational flow is limited, especially for low Reynolds numbers and flow behavior index characteristic of shear-thinning fluids.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer