It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To investigate the accidental shutdown process for a large vertical and submersible mixed-flow pump unit in a drainage pumping station, a three-dimensional numerical method for this transition process was proposed according to the angular momentum balance theorem and rigid body rotation technology. We obtained the transient performance curves of the unit and the internal flow characteristics of the full flow channel. In addition, we also analyzed the energy loss distribution of the through-flow components during this progress based on the entropy production theory. The results show that the whole runaway process needs to go through four stages: the pump mode, the pump braking mode, the turbine mode, and the stable runaway mode. The pressure amplitude changes greatly in impeller and guide vanes, and the main fluctuation frequency is the blade frequency. There are higher harmonic frequencies in the dynamic rotor-stator interface. As the rotating speed increases in turbine mode, the negative pressure area near the impeller blade’s trailing edge gradually increases. The entropy production method can be used to determine the location, intensity of energy loss during the transient process. If the rotating speed exceeds the allowed value in the runaway turbine mode, the interaction between blade tip vortex and hub vortex rope may cause loss of stability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer