It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Lighter weight, simpler structure and throat area controllable are the developing trends of aircraft engine exhaust system. To meet these challenges, a new concept of hybrid throat control (TC) nozzle was proposed to improve the control efficiency of throat area (η) by using a rotary valve with secondary injection. The flow mechanism of the hybrid TC nozzle and the effect of aerodynamic and geometric parameters on nozzle performance were investigated numerically. Then the approximate model characterizing the hybrid TC nozzle was established with design of experiment and response surface methodology. The approximate model was used to analysis the coupling effect between parameters and optimized the parameter combination. The results show that the flow area of the nozzle can be restricted effectively by the rotary valve and the secondary flow, and η is bigger than 5.24. Nozzle pressure ratio and secondary pressure ratio are the dominant factors for the nozzle throat area control performance. The optimization of the parameter combination was carried out with penalty function approach, with ratio of throat area control being 30 percent and corrected mass flow ratio of secondary flow being 5 percent The maximize error of the optimization result is 4.13 percent and it verifies the validity and feasibility of the approximate model.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer