It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Ultra-high dose rate FLASH radiotherapy, a promising cancer treatment approach, offers the potential to reduce healthy tissue damage during radiotherapy. As the mechanisms underlying this process remain unknown, several hypotheses have been proposed, including the altered production of radio-induced species under ultra-high dose rate (UHDR) conditions. This study explores realistic irradiation scenarios with various dose-per-pulse and investigates the role of pulse temporal structure. Using the Geant4 toolkit and its Geant4-DNA extension, we modeled the Oriatron eRT6 linac, a FLASH-validated electron beam, and conducted simulations covering four distinct dose-per-pulse scenarios – 0.17 Gy, 1 Gy, 5 Gy, and 10 Gy – all featuring a 1.8 µs pulse duration. Results show close agreement between simulated and experimental dose profiles in water, validating the eRT6 model for Geant4-DNA simulations. We observed important changes in the temporal evolution of certain species, such as the earlier fall in hydroxyl radicals (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Radiation Physics (IRA), Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland (GRID:grid.9851.5) (ISNI:0000 0001 2165 4204)
2 University of Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, Gradignan, France (GRID:grid.412041.2) (ISNI:0000 0001 2106 639X)
3 University of Ioannina, Medical Physics Laboratory, Department of Medicine, Ioannina, Greece (GRID:grid.9594.1) (ISNI:0000 0001 2108 7481)