Full text

Turn on search term navigation

© 2024 Keya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Malaysia, particularly Pahang, experiences devastating floods annually, causing significant damage. The objective of the research was to create a flood susceptibility map for the designated area by employing an Ensemble Machine Learning (EML) algorithm based on geographic information system (GIS). By analyzing nine key factors from a geospatial database, flood susceptibility map was created with the ArcGIS software (ESRI ArcGIS Pro v3.0.1 x64). The Random Forest (RF) model was employed in this study to categorize the study area into distinct flood susceptibility classes. The Feature selection (FS) method was used to ranking the flood influencing factors. To validate the flood susceptibility models, standard statistical measures and the Area Under the Curve (AUC) were employed. The FS ranking demonstrated that the primary attributes to flooding in the study region are rainfall and elevation, with slope, geology, curvature, flow accumulation, flow direction, distance from the river, and land use/land cover (LULC) patterns ranking subsequently. The categories of ’very high’ and ’high’ class collectively made up 37.1% and 26.3% of the total area, respectively. The flood vulnerability assessment of Pahang found that the Eastern, Southern, and central regions were at high risk of flooding due to intense precipitation, low-lying topography with steep inclines, proximity to the shoreline and rivers, and abundant flooded vegetation, crops, urban areas, bare ground, and rangeland. Conversely, areas with dense tree canopies or forests were less susceptible to flooding in this research area. The ROC analysis demonstrated strong performance on the validation datasets, with an AUC value of >0.73 and accuracy scores exceeding 0.71. Research on flood susceptibility mapping can enhance risk reduction strategies and improve flood management in vulnerable areas. Technological advancements and expertise provide opportunities for more sophisticated methods, leading to better prepared and resilient communities.

Details

Title
Enhancing precision flood mapping: Pahang’s vulnerability unveiled
Author
Keya, Tahmina Afrose  VIAFID ORCID Logo  ; Balakrishnan, Siventhiran S; Maheswaran Solayappan; Saravana Selvan Dheena Dhayalan; Subramaniam, Sreeramanan; Low Jun An; Leela, Anthony; Fernandez, Kevin; Kumar, Prahan; Lokeshmaran, A; Boratne, Abhijit Vinodrao; Mohd Tajuddin Abdullah
First page
e0310435
Section
Research Article
Publication year
2024
Publication date
Nov 2024
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3125995382
Copyright
© 2024 Keya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.