Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study introduces an ensemble model designed for real-time monitoring of bedridden patients. The model was developed using a unique dataset, specifically acquired for this study, that captures six typical movements. The dataset was balanced using the Synthetic Minority Over-sampling Technique, resulting in a diverse distribution of movement types. Three models were evaluated: a Decision Tree Regressor, a Gradient Boosting Regressor, and a Bagging Regressor. The Decision Tree Regressor achieved an accuracy of 0.892 and an R2 score of 1.0 on the training dataset, and 0.939 on the test dataset. The Boosting Regressor achieved an accuracy of 0.908 and an R2 score of 0.99 on the training dataset, and 0.943 on the test dataset. The Bagging Regressor was selected due to its superior performance and trade-offs such as computational cost and scalability. It achieved an accuracy of 0.950, an R2 score of 0.996 for the training data, and an R2 score of 0.959 for the test data. This study also employs K-Fold cross-validation and learning curves to validate the robustness of the Bagging Regressor model. The proposed system addresses practical implementation challenges in real-time monitoring, such as data latency and false positives/negatives, and is designed for seamless integration with hospital IT infrastructure. This research demonstrates the potential of machine learning to enhance patient safety in healthcare settings.

Details

Title
Regressive Machine Learning for Real-Time Monitoring of Bed-Based Patients
Author
Joseph, Paul 1 ; Husnain Ali 2 ; Daniel, Matthew 1 ; Anvin, Thomas 1 ; Rejath Jose 1   VIAFID ORCID Logo  ; Mayer, Jonathan 1   VIAFID ORCID Logo  ; Bekbolatova, Molly 1   VIAFID ORCID Logo  ; Devine, Timothy 3 ; Toma, Milan 1   VIAFID ORCID Logo 

 Department of Osteopathic Manipulative Medicine, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; [email protected] (P.J.); [email protected] (D.M.); [email protected] (A.T.); [email protected] (R.J.); [email protected] (J.M.); [email protected] (M.B.) 
 Department of Clinical Medicine, American University of the Caribbean School of Medicine, 1 University Drive at Jordan Road, 33027 Cupecoy, Sint Maarten, The Netherlands; [email protected] 
 The Ferrara Center for Patient Safety and Clinical Simulation, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY 11568, USA; [email protected] 
First page
9978
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3126002337
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.