Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study investigates the adsorption characteristics of the pristine MoTe2 monolayer and the metal atom (Co, V, W, Zr)-modified MoTe2 monolayer on the hazardous gases CO, CH3CHO, and C6H6 based on the density functional theory. The adsorption mechanism was studied from the perspectives of molecular density differences, band structures, molecular orbitals, and the density of states. Research analysis showed that the changes in conductivity caused by the adsorption of different gases on the substrate were significantly different, which can be used to prepare gas sensing materials with selective sensitivity for CO, CH3CHO, and C6H6. This study lays a reliable theoretical foundation for the gas sensing analysis of toxic and hazardous gases using metal atom-modified MoTe2 materials.

Details

Title
Adsorption Properties of Metal Atom (Co, V, W, Zr)-Modified MoTe2 for CO, CH3CHO, and C6H6 Gases: A DFT Study
Author
Xiao, Weizhong 1 ; Wang, Zixuan 2 ; Gui, Yingang 3   VIAFID ORCID Logo 

 College of Energy Engineering, Huanghuai University, Zhumadian 463000, China; [email protected] 
 School of Intelligent Manufacturing, Huanghuai University, Zhumadian 463000, China 
 College of Engineering and Technology, Southwest University, Chongqing 400715, China; [email protected] 
First page
5086
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3126015574
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.