Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The monitoring of grape quality parameters within viticulture using airborne remote sensing is an increasingly important aspect of precision viticulture. Airborne remote sensing allows high volumes of spatial consistent data to be collected with improved efficiency over ground-based surveys. Spectral data can be used to understand the characteristics of vineyards, including the characteristics and health of the vines. Within viticultural remote sensing, the use of cover-crop spectra for monitoring is often overlooked due to the perceived noise it generates within imagery. However, within viticulture, the cover crop is a widely used and important management tool. This study uses multispectral data acquired by a high-resolution uncrewed aerial vehicle (UAV) and Sentinel-2 MSI to explore the benefit that cover-crop pixels could have for grape yield and quality monitoring. This study was undertaken across three growing seasons in the southeast of England, at a large commercial wine producer. The site was split into a number of vineyards, with sub-blocks for different vine varieties and rootstocks. Pre-harvest multispectral UAV imagery was collected across three vineyard parcels. UAV imagery was radiometrically corrected and stitched to create orthomosaics (red, green, and near-infrared) for each vineyard and survey date. Orthomosaics were segmented into pure cover-cropuav and pure vineuav pixels, removing the impact that mixed pixels could have upon analysis, with three vegetation indices (VIs) constructed from the segmented imagery. Sentinel-2 Level 2a bottom of atmosphere scenes were also acquired as close to UAV surveys as possible. In parallel, the yield and quality surveys were undertaken one to two weeks prior to harvest. Laboratory refractometry was performed to determine the grape total acid, total soluble solids, alpha amino acids, and berry weight. Extreme gradient boosting (XGBoost v2.1.1) was used to determine the ability of remote sensing data to predict the grape yield and quality parameters. Results suggested that pure cover-cropuav was a successful predictor of grape yield and quality parameters (range of R2 = 0.37–0.45), with model evaluation results comparable to pure vineuav and Sentinel-2 models. The analysis also showed that, whilst the structural similarity between the both UAV and Sentinel-2 data was high, the cover crop is the most influential spectral component within the Sentinel-2 data. This research presents novel evidence for the ability of cover-cropuav to predict grape yield and quality. Moreover, this finding then provides a mechanism which explains the success of the Sentinel-2 modelling of grape yield and quality. For growers and wine producers, creating grape yield and quality prediction models through moderate-resolution satellite imagery would be a significant innovation. Proving more cost-effective than UAV monitoring for large vineyards, such methodologies could also act to bring substantial cost savings to vineyard management.

Details

Title
Investigating the Role of Cover-Crop Spectra for Vineyard Monitoring from Airborne and Spaceborne Remote Sensing
Author
Williams, Michael 1 ; Burnside, Niall G 2   VIAFID ORCID Logo  ; Brolly, Matthew 1   VIAFID ORCID Logo  ; Joyce, Chris B 1 

 Centre for Earth Observation Science, University of Brighton, Brighton and Hove BN2 4GJ, UK; [email protected] (N.G.B.); [email protected] (M.B.); [email protected] (C.B.J.) 
 Centre for Earth Observation Science, University of Brighton, Brighton and Hove BN2 4GJ, UK; [email protected] (N.G.B.); [email protected] (M.B.); [email protected] (C.B.J.); Scottish Association for Marine Sciences, Oban Argyll PA37 1QA, UK 
First page
3942
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3126020586
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.