Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Switched reluctance motors (SRMs) are widely used in industrial applications due to their advantages. Multi-motor synchronous control systems are crucial in modern industry, as their control strategies significantly impact synchronization performance. Traditional deviation coupling control structures face limitations during the startup phase, leading to excessive tracking errors and exacerbated by uneven load distribution, resulting in desynchronized motor acceleration and increased speed synchronization errors. This study proposes a modified deviation coupling control method based on an adaptive weighted particle swarm optimization (PSO) algorithm to enhance multi-motor synchronization performance. Traditional deviation coupling control applies equal reference torque inputs to each motor’s current loop, failing to address uneven load distribution and causing inconsistent accelerations. To resolve this, a gain equation based on speed deviation is introduced, incorporating self-tracking error and gain coefficients for dynamic synchronization error compensation. The gain coefficients are optimized using the adaptive weighted PSO algorithm to improve system adaptability. A simulation model of a synchronization control system for three SRMs was developed in the Matlab/Simulink R2023b environment. This model compares the synchronization performance of traditional deviation coupling, Fuzzy-PID improved structure, and adaptive PSO improved structure during motor startup, sudden speed increases, and load disturbances. The validated deviation coupling control structure achieved the initial set speed in approximately 0.236 s, demonstrating faster convergence and a 6.35% reduction in settling time. In both the motor startup and sudden speed increase phases, the two optimized methods outperformed the traditional structure in dynamic performance and synchronization accuracy, with the adaptive PSO structure improving synchronization accuracy by 54% and 37.17% over the Fuzzy-PID structure, respectively. Therefore, the PSO-optimized control system demonstrates faster convergence, improved stability, and enhanced synchronization performance.

Details

Title
Adaptive Weighted Particle Swarm Optimization for Controlling Multiple Switched Reluctance Motors with Enhanced Deviatoric Coupling Control
Author
Zhang, Tianyu 1 ; Xu, Xianglian 1 ; Zhang, Fangqing 2   VIAFID ORCID Logo  ; Gu, Yifeng 2 ; Deng, Kaitian 1 ; Xu, Yuli 1 ; Xie, Tunzhen 1   VIAFID ORCID Logo  ; Song, Yuanqing 1 

 School of Automation, Wuhan University of Technology, Wuhan 430070, China; [email protected] (T.Z.); [email protected] (K.D.); [email protected] (Y.X.); [email protected] (T.X.); [email protected] (Y.S.) 
 School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China; [email protected] 
First page
4320
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3126024252
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.