Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As nanophysics constitutes the scientific core of nanotechnology, it has a decisive potential for advancing clean renewable energy applications. Starting with a brief foray into the realms of nanophysics’ potential, this review manuscript is expected to contribute to understanding why and how this science’s eruption is leading to nanotechnological innovations impacting the clean renewable energy economy. Many environmentally friendly energy sources are considered clean since they produce minimal pollution and greenhouse gas emissions; however, not all are renewable. This manuscript focuses on experimental achievements where nanophysics helps reduce the operating costs of clean renewable energy by improving efficiency indicators, thereby ensuring energy sustainability. Improving material properties at the nanoscale, increasing the active surface areas of reactants, achieving precise control of the physical properties of nano-objects, and using advanced nanoscale characterization techniques are the subject of this in-depth analysis. This will allow the reader to understand how nanomaterials can be engineered with specific applications in clean energy technologies. A special emphasis is placed on the role of such signs of progress in hydrogen production and clean storage methods, as green hydrogen technologies are unavoidable in the current panorama of energy sustainability.

Details

Title
Nanophysics Is Boosting Nanotechnology for Clean Renewable Energy
Author
Lobo, Rui F M 1   VIAFID ORCID Logo  ; Sequeira, César A C 2   VIAFID ORCID Logo 

 Laboratory of Nanophysics/Nanotechnology and Energy (N2E), Center of Technology and Systems (CTS), Physics Department, NOVA School of Science & Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal 
 Materials Electrochemistry Group, Department of Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal 
First page
5356
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3126027717
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.