Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As dental pulp contains the stem cells necessary for regeneration, the tooth should hold the intrinsic capacity for self-repair. A triphasic hybrid dental biocomposite (3HB) composed of biocompatible biopolymers to provide strength, antibacterial properties and protein-based cell support could provide a conducive microenvironment for the regeneration of dental structures. 3HB was incorporated into Mineral Trioxide Aggregate (ProRoot MTA) to construct a malleable injectable implant. Human tooth pulp cells (hDPCs) significantly increased proliferation in the presence of 3HB+MTA compared to 3HB or MTA alone. Cell viability decreased with MTA alone but increased with 3HB and 3HB+MTA. 3HB+MTA was implanted into the residual tooth of drilled Wistar rat M2 molars for up to 45 days. Stereological analysis from micro-CT images showed the volume of the tooth remaining. Histologically, regenerative pulpal architecture was seen invading 3HB. A continuous odontoblastic profile lined a deposit of dentin-like material suggesting reparative dentinogenesis. Overall, no infection or encapsulation was seen. Immunohistochemically, odontoblasts were seen along the margins of the wounded tooth undergoing repair. Mesenchymal cells (MSCs) were seen at the base of the drilled tooth and by 21 days had translocated into the implant itself. Cells stimulating remineralization were highly expressed in the tooth undergoing repair. CD146-positive MSCs were seen in the center of the implant, possibly stimulating remineralization. In conclusion, behavior of 3HB+ in vitro and in vivo provided a promising start as 3HB+MTA may serve as a viable regenerative scaffold for pulp regeneration; however, this should be further studied before clinical use can be considered.

Details

Title
In Vivo and In Vitro Response to a Regenerative Dental Scaffold
Author
Gould, Maree L 1   VIAFID ORCID Logo  ; Deng, Xiaoxuan 1   VIAFID ORCID Logo  ; Lyons, Karl 2 ; Azam, Ali 1 

 Centre for Bioengineering & Nanomedicine (Dunedin), Faculty of Dentistry, Division of Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand 
 Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand 
First page
5384
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3126028725
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.