Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to its vulnerability to a variety of cyber attacks, research on cyber security for power systems has become especially crucial. In order to maintain the safe and stable operation of power systems, it is worthwhile to gain insight into the complex characteristics and behaviors of cyber attacks from the attacker’s perspective. The consensus-based distributed state estimation problem is investigated for power systems subject to collaborative attacks. In order to describe such attack behaviors, the denial of service (DoS) attack model for hybrid remote terminal unit (RTU) and phasor measurement unit (PMU) measurements, and the false data injection (FDI) attack model for neighboring estimation information, are constructed. By integrating these two types of attack models, a different consensus-based distributed estimator is designed to accurately estimate the state of the power system under collaborative attacks. Then, through Lyapunov stability analysis theory, a sufficient condition is provided to ensure that the proposed distributed estimator is stable, and a suitable consensus gain matrix is devised. Finally, to confirm the viability and efficacy of the suggested algorithm, a simulation experiment on an IEEE benchmark 14-bus power system is carried out.

Details

Title
Consensus-Based Power System State Estimation Algorithm Under Collaborative Attack
Author
Cheng, Zhijian 1 ; Chen, Guanjun 2   VIAFID ORCID Logo  ; Xiao-Meng, Li 3 ; Ren, Hongru 1 

 School of Automation, Guangdong-Hong Kong Joint Laboratory for Intelligent Decision and Cooperative Control, and Guangdong Provincial Key Laboratory for Intelligent Decision and Cooperative Control, Guangdong University of Technology, Guangzhou 510006, China; [email protected] 
 CSSC Systems Engineering Research Institute, China State Shipbuilding Corporation Limited, Beijing 100094, China; [email protected] 
 School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China; [email protected] 
First page
6886
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3126285283
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.