It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background: As noncoding RNAs, circular RNAs (circRNAs) can act as microRNA (miRNA) sponges due to their abundant miRNA binding sites, allowing them to regulate gene expression and influence disease development. Accurately identifying circRNA–miRNA associations (CMAs) is helpful to understand complex disease mechanisms. Given that biological experiments are time consuming and labor intensive, alternative computational methods to predict CMAs are urgently needed. Results: This study proposes a novel computational model named CMAGN, which incorporates several advanced computational methods, for predicting CMAs. First, similarity networks for circRNAs and miRNAs are constructed according to their sequences. Graph attention autoencoder is then applied to these networks to generate the first representations of circRNAs and miRNAs. The second representations of circRNAs and miRNAs are obtained from the CMA network via node2vec. The similarity networks of circRNAs and miRNAs are reconstructed on the basis of these new representations. Finally, network consistency projection is applied to the reconstructed similarity networks and the CMA network to generate a recommendation matrix. Conclusion: Five-fold cross-validation of CMAGN reveals that the area under ROC and PR curves exceed 0.96 on two widely used CMA datasets, outperforming several existing models. Additional tests elaborate the reasonability of the architecture of CMAGN and uncover its strengths and weaknesses.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer