Abstract

Background

This study aims to assess the performance of an established an AI algorithm trained on conventional polychromatic computed tomography (CT) images (CPIs) to detect pulmonary ground-glass nodules (GGNs) on virtual monochromatic images (VMIs), and to screen the optimal virtual monochromatic energy for the clinical evaluation of GGNs.

Methods

Non-enhanced chest SDCT images of patients with pulmonary GGNs in our clinic from January 2022 to December 2022 were continuously collected: adenocarcinoma in situ (AIS, n = 40); minimally invasive adenocarcinoma (MIA, n = 44) and invasive adenocarcinoma (IAC, n = 46). A commercial CAD system based on deep convolutional neural networks (DL-CAD) was used to process the CPIs, 40, 50, 60, 70, and 80 keV monochromatic images of 130 spectral CT images. AI-based histogram parameters by logistic regression analysis. The diagnostic performance was evaluated by the receiver operating characteristic (ROC) curves, and Delong’s test was used to compare the CPIs group with the VMIs group.

Results

When distinguishing IAC from MIA, the diagnostic efficiency of total mass was obtained at 80 keV, which was superior to those of other energy levels (P < 0.05). And Delong’s test indicated that the differences between the area-under-the-curve (AUC) values of the CPIs group and the VMIs group were not statistically significant (P > 0.05).

Conclusion

The AI algorithm trained on CPIs showed consistent diagnostic performance on VMIs. When pulmonary GGNs are encountered in clinical practice, 80 keV could be the optimal virtual monochromatic energy for the identification of preoperative IAC on a non-enhanced chest CT.

Details

Title
An artificial intelligence algorithm for the detection of pulmonary ground-glass nodules on spectral detector CT: performance on virtual monochromatic images
Author
Zhong-Yan, Ma; Hai-lin, Zhang; Fa-jin Lv; Zhao, Wei; Han, Dan; Li-chang, Lei; Song, Qin; Wei-wei, Jing; Duan, Hui; Shao-Lei, Kang
Pages
1-11
Section
Research
Publication year
2024
Publication date
2024
Publisher
BioMed Central
e-ISSN
14712342
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3126414753
Copyright
© 2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.