It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Glass surfaces tend to be hydrophilic when exposed to water resulting in a low water contact angle and high adhesion. Fabrication on a glass surface with low water adhesion can minimize the droplet’s adhesion conduct self-cleaning, and improve the cleanliness of the glass surface. This paper presents surface texturing of the soda-lime glass surface by laser processing three different patterns to improve water contact angle with low water adhesion on the modified glass surface. A design experiment method was developed to determine the effects of laser parameters on the glass surfaces. The laser parameters used are laser power between 0.45 and 1.05W and scanning speeds of 210, 420, and 600 mm/min. The effects of laser parameters on surface morphology, water contact angle measurement, and average surface roughness, Ra were investigated. The characterization was conducted for surface morphology, two-dimensional surface roughness profile, and water contact angle. The results show that the highest water contact angle obtained after laser texturing is up to 125.29° compared to the as-received surface with a contact angle of 32.35°. The highest water contact angle resulted from 420 mm/min scanning speed and 0.45 W of laser power, responding to the surface with a minimum range of Rax and Ray of 0.96 and 1.5 μm. These findings are significant for designing surface modification of self-cleaning glass surface applications like the automotive windscreens, and window panels for high-rise buildings.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer