It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Embroidery images carry rich historical information and are an important form of embroidery art. In the field of combination query image retrieval, how to efficiently retrieve the embroidery image information required by users has become a current research challenge. In recent years, convolutional neural networks (CNNs) have achieved significant success in image feature extraction, but they tend to focus on local information, making it easy to ignore global context information when processing such textured embroidery images. Therefore, we propose a combination query retrieval method for embroidery images. First, we propose Blend-Transformer, which introduces Group External Attention (GEA). GEA can integrate feature information from three different dimensions, effectively capturing the local and global context information of embroidery images. Second, we propose Enhanced CNN, which introduces Shuffle Attention (SA), regrouping the reference image features extracted by CNN and reaggregating them by channel to enhance the richness of embroidery image feature information. Through experiments on the TCE-S and ICR2020 standard datasets, we verify the excellent performance of the proposed algorithm in embroidery image retrieval. Our method fills the gap in embroidery image retrieval research and provides a new perspective for the protection of embroidery art.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Fujian University of Technology, School of Design, Fuzhou, China (GRID:grid.440712.4) (ISNI:0000 0004 1770 0484)
2 The University of Sheffield, Faculty of Social Sciences, Sheffield, UK (GRID:grid.11835.3e) (ISNI:0000 0004 1936 9262)