It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
One of the precursors of lung cancer is the presence of lung nodules, and accurate identification of their benign or malignant nature is important for the long-term survival of patients. With the development of artificial intelligence, deep learning has become the main method for lung nodule classification. However, successful deep learning models usually require large number of parameters and carefully annotated data. In the field of medical images, the availability of such data is usually limited, which makes deep networks often perform poorly on new test data. In addition, the model based on the linear stacked single branch structure hinders the extraction of multi-scale features and reduces the classification performance. In this paper, to address this problem, we propose a lightweight interleaved fusion integration network with multi-scale feature learning modules, called MIFNet. The MIFNet consists of a series of MIF blocks that efficiently combine multiple convolutional layers containing 1 × 1 and 3 × 3 convolutional kernels with shortcut links to extract multiscale features at different levels and preserving them throughout the block. The model has only 0.7 M parameters and requires low computational cost and memory space compared to many ImageNet pretrained CNN architectures. The proposed MIFNet conducted exhaustive experiments on the reconstructed LUNA16 dataset, achieving impressive results with 94.82% accuracy, 97.34% F1 value, 96.74% precision, 97.10% sensitivity, and 84.75% specificity. The results show that our proposed deep integrated network achieves higher performance than pre-trained deep networks and state-of-the-art methods. This provides an objective and efficient auxiliary method for accurately classifying the type of lung nodule in medical images.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Xuzhou Medical University, School of Medical Information & Engineering, Xuzhou, China (GRID:grid.413458.f) (ISNI:0000 0000 9330 9891)