Abstract

Melanoma is the most aggressive type of skin cancer and can metastasize during primary tumor formation. This research aimed to determine the relationship between the prevention of melanoma development in a mouse model treated with liposomes loaded with soybean lunasin and amaranth unsaponifiable matter (UM + LunLip) and cell cycle arrest. Tumors excised from C57BL/6 mice treated topically or subcutaneously with UM + LunLip were subjected to immunohistochemistry. Markers related to cell cycle inhibition (p16, p21, p27, and p53) and markers involved in cell cycle progression (cyclin-dependent kinase, CDK6, and cyclin D1) were assessed. The results showed that UM + LunLip had antitumor activity in C57BL/6 mice treated either topically or subcutaneously by p16, p21, p27, and p53 overexpression (up to 572-, 134-, 30-, and 57-fold change, FC, respectively) in the tumors of mice treated with 30 mg UM + LunLip/kg body weight compared with the tumor-bearing untreated control. However, CDK6 and cyclin D1 expression was not inhibited (up to 1.37 FC and 2.09 FC, respectively), which is a typical behavior of cyclin D in melanoma. Therefore, melanoma tumor development was prevented by the overexpression of cell cycle inhibitors p16, p21, p27, and p53 due to UM + LunLip treatments. Since the topical application was effective, less invasive, and more practical for the user, this application will be recommended for future steps in in vivo studies.

Details

Title
Encapsulation of soybean lunasin and amaranth unsaponifiable matter in liposomes induces cell cycle arrest in an allograft melanoma mouse model
Author
Castañeda-Reyes, Erick Damián 1 ; Gonzalez-Almazán, Alejandro 2 ; Lubbert-Licón, Alán 2 ; Yahya, Najwa Farhana 1 ; Gonzalez de Mejia, Elvira 1 

 University of Illinois, Department of Food Science and Human Nutrition, Champaign, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991) 
 University of Illinois, Department of Food Science and Human Nutrition, Champaign, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991); Tecnológico de Monterrey, Monterrey, México (GRID:grid.419886.a) (ISNI:0000 0001 2203 4701) 
Pages
27858
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3128041994
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.