It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Coastal change is a complex combination of multi-scale processes (e.g., wave-driven cross-shore and longshore transport; dune, bluff, and cliff erosion; overwash; fluvial and inlet sediment supply; and sea-level-driven recession). Historical sea-level-driven coastal recession on open ocean coasts is often outpaced by wave-driven change. However, future sea-level-driven coastal recession is expected to increase significantly in tandem with accelerating rates of global sea-level rise. Few models of coastal sediment transport can resolve the multitude of coastal-change processes at a given beach, and fewer still are computationally efficient enough to achieve large-scale, long-term simulations, while accounting for historical behavior and uncertainties in future climate. Here, we show that a scalable, data-assimilated shoreline-change model can achieve realistic simulations of long-term coastal change and uncertainty across large coastal regions. As part of the modeling case study of the U.S. South Atlantic Coast (Miami, Florida to Delaware Bay) presented here, we apply historical, satellite-derived observations of shoreline position combined with daily hindcasted and projected wave and sea-level conditions to estimate long-term coastal change by 2100. We find that 63 to 94% of the shorelines on the U.S. South Atlantic Coast are projected to retreat past the present-day extent of sandy beach under 1.0 to 2.0 m of sea-level rise, respectively, without large-scale interventions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 U.S. Geological Survey, Santa Cruz, USA (GRID:grid.513147.5); University of Illinois at Chicago, Chicago, USA (GRID:grid.185648.6) (ISNI:0000 0001 2175 0319)
2 UNSW Sydney, Sydney, Australia (GRID:grid.1005.4) (ISNI:0000 0004 4902 0432)
3 U.S. Geological Survey, Santa Cruz, USA (GRID:grid.513147.5)