It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The rapid advancement of artificial intelligence and robot technology has spurred the proposal and innovation of a coal gangue sorting robot system (CGSRS) paradigm. The time-varying raw coal flow (TVRCF) with multi-scene and full working conditions affects the gangue queue. Configuring the CGSRS scheme correctly is combative. The field environment puts forward higher requirements for the time complexity of the CGSRS multi-task allocation strategy. Therefore, this paper proposes a scheme evaluation method of the CGSRS with time-varying multi-scenario based on deep learning. Firstly, the gangue queue data set of multi-scene and full-condition TVRCF was obtained according to the belt speed, the maximum coal flow, and the uncorrelated nonlinear changes of coal flow and gangue content. The CGSRS scheme is established based on robot number and rule combination, and the multi-task allocation strategy is adjusted to generate the labels of the gangue queue. Then, the RGB sample set is established based on the labels of the gangue queue. The CGSRS scheme evaluation model is trained based on DenseNet. Finally, the CGSRS scheme evaluation method was designed to realize the prediction of a random gangue queue. In this paper, the CGSRS scheme evaluation model, the stability of the solution, and the comparison of methods are carried out. Experimental results show that the solution of the CGSRS scheme evaluation model is accurate and stable. The time complexity is significantly reduced and very stable. The CGSRS scheme evaluation method is applied to the CGSRS multi-task allocation problem, and the stability of the solution is not affected by the data. It is significantly better than the multi-task allocation strategy. The proposed method is the first attempt to apply deep learning to a multi-task allocation problem in CGSRS.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Xi’an University of Science and Technology, School of Mechanical Engineering, Xi’an, China (GRID:grid.440720.5) (ISNI:0000 0004 1759 0801)