It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Extracellular vesicles (EVs) are involved in the progression of various diseases. Tumor cell-derived EVs (TEVs) are a particular concern, as they can induce fatty liver by promoting liver macrophages to secrete tumor necrosis factor (TNF), thus enhancing the toxicity of chemotherapy. Therefore, reducing pathogenic EV production is a potential strategy for treating EV-related diseases. However, there are currently no effective clinical reagents to obtain this purpose. In addition, EVs are also natural and ideal drug-delivery vehicles. Improving the delivery efficiency of EVs remains a challenge. Proton pump inhibitors (PPIs) have been demonstrated to promote cell uptake of EVs by inducing micropinocytosis. Here, we show that PPIs can accelerate TEV clearance, reduce TEV uptake by liver macrophages and decrease the mRNA expression of TNF in liver macrophages of tumor-bearing mice. Correspondingly, the fatty liver phenotypes are alleviated, and the tolerance to chemotherapy is improved in these mice. Furthermore, our findings indicate that PPIs facilitate the uptake of red blood cell-derived EVs (RBC-EVs) loaded with antisense oligonucleotides of Trim21 (Trim21-ASOs) by the liver macrophages of obesity. Consequently, the inhibition of macrophage inflammatory responses in obese mice mediated by RBC-EVs/Trim21-ASOs was further enhanced by PPIs, resulting in a more profound improvement in obesity and related metabolic disorders. In conclusion, our findings demonstrated that PPIs can effectively clear pathogenic EVs and enhance the delivery efficacy of EV vehicles, making them a highly promising clinical prospect.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Internal Medicine, Hangzhou, P.R. China (GRID:grid.412465.0)
2 Zhejiang University School of Medicine, Institute of Immunology, Hangzhou, P.R. China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X)
3 The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Department of Gastroenterology, Wenzhou, P.R. China (GRID:grid.417384.d) (ISNI:0000 0004 1764 2632)
4 Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Department of Cardiology, Shanghai, P.R. China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293)