It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The optical, photoluminescence, and electrical properties of Poly(Z)-PTI and Poly(E)-PTI, two Poly-Pyrrol-Thiazol-Imine polymers with comparable chemical structures but distinct configurations, were examined. Using the dip-casting method, polymer films were deposited on ITO substrates. UV-VIS spectroscopy revealed that both polymers diverged between 500 and 800 nm, showing the impact of molecular arrangement, but showed similar absorption behavior for wavelengths shorter than 500 nm. For Poly(Z)-PTI, the direct optical energy gaps were 2.06 eV, while for Poly(E)-PTI, they were 1.78 eV. Poly(Z)-PTI displayed an emission peak at 610 nm (red) according to laser photoluminescence spectra, while Poly(E)-PTI peaked at 563 nm (green-yellow). The capacitance behavior was revealed by electrochemical impedance spectroscopy. Nyquist plots suggested an equivalent circuit model of Rs (CRct)(QR)(CR) for both polymers, and the relaxation times were 15.9 ns for Poly(Z)-PTI and 89.5 ns for Poly(E)-PTI. The Mott-Schottky analysis verified the n-type conductivity, revealing 2.18 × 1016 cm− 3 carrier densities for Poly(Z)-PTI and 1.78 × 1016 cm− 3 for Poly(E)-PTI. At lower frequencies, both polymers exhibited limited conductivity and large dielectric constants. Insights into the possible uses of Poly-Pyrrol-Thiazol-Imine polymers in electrical and optoelectronic devices are provided by this study, which emphasizes the influence of molecular configuration on these polymers’ characteristics.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Tanta University, Laser Laboratory, Physics Department, Faculty of Science, Tanta, Egypt (GRID:grid.412258.8) (ISNI:0000 0000 9477 7793)
2 Tanta University, Polymer Research Group, Department of Chemistry, Faculty of Science, Tanta, Egypt (GRID:grid.412258.8) (ISNI:0000 0000 9477 7793)
3 Kafrelsheikh University, Physics Department, Faculty of Science, Kafrelsheikh, Egypt (GRID:grid.411978.2) (ISNI:0000 0004 0578 3577)