It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To evaluate the room-temperature hydrogen embrittlement susceptibility (HES) of high-pressure hydrogen storage vessels, a modified slow-strain-rate tensile (MSSRT) testing method was proposed for effectively aligning with their actual operating conditions. The effectiveness of the MSSRT testing method in evaluating the room-temperature HES of steels under high pressure was validated by comparing the results obtained using the conventional slow strain rate tensile (SSRT) and proposed MSSRT testing methods for 30CrMo steel, which is widely used for manufacturing high-pressure hydrogen storage vessels. The tensile properties and fracture morphologies of 23Cr2Ni4MoV steel were then examined using the MSSRT testing method under 35 MPa hydrogen and nitrogen at room temperature. Results indicate that 35 MPa hydrogen exerted a marginal effect on the tensile properties of 23Cr2Ni4MoV steel at room temperature when considering the MSSRT testing method; moreover, the test specimen basically exhibited macroscopic ductile fracture. Furthermore, obvious surface cracking was observed on the fractured specimen tested under hydrogen, whereas surface cracking was not observed on the fractured specimen tested under nitrogen. Hence, the relative reduction of area and surface cracking are necessary criteria for evaluating the room-temperature HES of steels using the MSSRT testing method. Overall, 23Cr2Ni4MoV steel might be unsuitable for manufacturing high-pressure hydrogen storage vessels.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Beijing University of Chemical Technology, College of Mechanical and Electrical Engineering, Beijing, China (GRID:grid.48166.3d) (ISNI:0000 0000 9931 8406); Hefei General Machinery Research Institute Co., Ltd., Hefei, China (GRID:grid.496814.6) (ISNI:0000 0004 6007 6074)
2 Hefei General Machinery Research Institute Co., Ltd., Hefei, China (GRID:grid.496814.6) (ISNI:0000 0004 6007 6074)