It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this contribution, the tests of the pre-series gyrotron TH1509UA for the Divertor Tokamak Test facility (DTT) at the FALCON test facility are presented. This versatile test bed proves useful for testing continuous wave (CW) high-power gyrotrons, but also serves as a platform for testing components for the transmission line or the Upper Launcher of ITER and DTT. The gyrotron has demonstrated a power level of 1.02 MW at the gyrotron output window, corresponding to 980 kW at the output of the Matching Optics Unit (MOU) with a power variation during the pulse of < 2% after a stabilisation period. Additionally, an efficiency of 40% has been demonstrated during five consecutive 100 s pulses. Compared to the previous version, TH1509U, this gyrotron demonstrates the successful prevention of parasitic mode excitation over a wide range of parameters around the design operating point. The potential for even higher power performance has been shown in short pulses but not explored in long pulses yet, which instead focused on demonstrating compliance with the required specifications for the DTT project.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer