It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In response to the low operating speed and poor stability of energy harvesting systems in smart grids, an energy harvesting optimization method based on improved convolutional neural networks and digital twin technology is proposed in the experiment. Firstly, a smart grid data transmission framework integrating digital twin technology is proposed. A digital twin mapping method based on time, data, and topology structure is used to realize the digital twin mapping at the device level of power grid. Through data synchronization and interaction between the physical power grid and the digital twin model, the operational efficiency and reliability of the power grid are improved. Then, the classical convolutional neural network and attention mechanism are used to comprehensively analyze the physical topology data in the smart grid energy acquisition system. The improved lightweight target detection model is combined to monitor the equipment status of the smart grid and extract key features. Simultaneously utilizing convolutional attention mechanism to dynamically adjust the feature weights of channels or spaces, completing the preprocessing of energy harvesting data. Finally, combined with energy harvesting and power grid switching system, the process of energy harvesting and power grid operation are optimized together. On the training and validation sets, when the channels exceeded 60, the proposed method achieved a system energy efficiency of 55% during operation. The system energy efficiency of the other three comparative algorithms was all less than 40%. In practical applications, as the energy transfer loss increased to 1.0, the system throughput increased to 50 bits. The electricity needs of different users were met, and the difference between power allocation and optimal power allocation was small, which was very reasonable. This proves that the research has effectively optimized the energy harvesting system in the smart grid, improving the efficiency and reliability of the system in practical applications of the smart grid. At the same time, in the increasingly severe energy problem, this system can further provide technical references for the utilization of renewable energy and help achieve the goal of sustainable energy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 State Grid Shandong Electric Power Company, Marketing Service Center (Metrology Center), Jinan, China (ISNI:0000 0004 8342 6380)
2 Shandong Doreen Power Technology Co., Ltd, R&D Center, Jinan, China