Abstract

Positional coding along the anterior-posterior axis is regulated by HOX genes, whose 3’ to 5’ expression correlates with location along this axis. The precise utilisation of HOX genes in different human cell types is not fully understood. Here, we use single-cell and spatial-transcriptomics, along with in-situ sequencing, to create a developmental atlas of the human fetal spine. We analyse HOX gene expression across cell types during development, finding that neural-crest derivatives unexpectedly retain the anatomical HOX code of their origin while also adopting the code of their destination. This trend is confirmed across multiple organs. In the axial plane of the spinal cord, we find distinct patterns in the ventral and dorsal domains, providing insights into motor pool organisation and loss of collinearity in HOXB genes. Our findings shed new light on HOX gene expression in the developing spine, highlighting a HOX gene ‘source code’ in neural-crest cell derivatives.

The HOX gene cluster is responsible for anteroposterior axis patterning in an evolutionarily conserved manner. Here they examine HOX gene expression in human embryos and show that neural-crest derivatives retain the anatomical HOX code of their origin while also adopting the code of their destination.

Details

Title
HOX gene expression in the developing human spine
Author
Lawrence, John E. G. 1 ; Roberts, Kenny 2   VIAFID ORCID Logo  ; Tuck, Elizabeth 2 ; Li, Tong 2   VIAFID ORCID Logo  ; Mamanova, Lira 2 ; Balogh, Petra 3 ; Usher, Inga 4 ; Piapi, Alice 4   VIAFID ORCID Logo  ; Mazin, Pavel 2   VIAFID ORCID Logo  ; Anderson, Nathaniel D. 2 ; Bolt, Liam 2 ; Richardson, Laura 2   VIAFID ORCID Logo  ; Prigmore, Elena 2   VIAFID ORCID Logo  ; He, Xiaoling 5   VIAFID ORCID Logo  ; Barker, Roger A. 5   VIAFID ORCID Logo  ; Flanagan, Adrienne 6   VIAFID ORCID Logo  ; Young, Matthew D. 2 ; Teichmann, Sarah A. 2   VIAFID ORCID Logo  ; Bayraktar, Omer 2   VIAFID ORCID Logo  ; Behjati, Sam 7   VIAFID ORCID Logo 

 Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, UK (GRID:grid.10306.34) (ISNI:0000 0004 0606 5382); Addenbrooke’s Hospital, Department of Trauma and Orthopaedics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK (GRID:grid.120073.7) (ISNI:0000 0004 0622 5016) 
 Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, UK (GRID:grid.10306.34) (ISNI:0000 0004 0606 5382) 
 Royal National Orthopaedic Hospital, Department of Cellular and Molecular Pathology, Brockley Hill, UK (GRID:grid.416177.2) (ISNI:0000 0004 0417 7890) 
 University College London Great Ormond Street Institute of Child Health, London, UK (GRID:grid.83440.3b) (ISNI:0000 0001 2190 1201) 
 University of Cambridge, Department of Clinical Neurosciences, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934); Puddicombe Way, Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK (GRID:grid.449973.4) (ISNI:0000 0004 0612 0791) 
 Department of Pathology, University College London (UCL) Cancer Institute, Research, London, UK (GRID:grid.83440.3b) (ISNI:0000 0001 2190 1201) 
 Wellcome Genome Campus, Wellcome Sanger Institute, Hinxton, UK (GRID:grid.10306.34) (ISNI:0000 0004 0606 5382); University of Cambridge, Department of Paediatrics, Cambridge, UK (GRID:grid.5335.0) (ISNI:0000 0001 2188 5934) 
Pages
10023
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3131034746
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.