Abstract

Patients with rare diseases often experience prolonged diagnostic delays. Ordering appropriate genetic tests is crucial yet challenging, especially for general pediatricians without genetic expertise. Recent American College of Medical Genetics (ACMG) guidelines embrace early use of exome sequencing (ES) or genome sequencing (GS) for conditions like congenital anomalies or developmental delays while still recommend gene panels for patients exhibiting strong manifestations of a specific disease. Recognizing the difficulty in navigating these options, we developed a machine learning model trained on 1005 patient records from Columbia University Irving Medical Center to recommend appropriate genetic tests based on the phenotype information. The model achieved a remarkable performance with an AUROC of 0.823 and AUPRC of 0.918, aligning closely with decisions made by genetic specialists, and demonstrated strong generalizability (AUROC:0.77, AUPRC: 0.816) in an external cohort, indicating its potential value for general pediatricians to expedite rare disease diagnosis by enhancing genetic test ordering.

Details

Title
Phenotype driven molecular genetic test recommendation for diagnosing pediatric rare disorders
Author
Chen, Fangyi 1   VIAFID ORCID Logo  ; Ahimaz, Priyanka 2 ; Nguyen, Quan M. 3 ; Lewis, Rachel 4 ; Chung, Wendy K. 5   VIAFID ORCID Logo  ; Ta, Casey N. 1   VIAFID ORCID Logo  ; Szigety, Katherine M. 6 ; Sheppard, Sarah E. 6 ; Campbell, Ian M. 6 ; Wang, Kai 7   VIAFID ORCID Logo  ; Weng, Chunhua 1   VIAFID ORCID Logo  ; Liu, Cong 5   VIAFID ORCID Logo 

 Columbia University, Department of Biomedical Informatics, New York, USA (GRID:grid.21729.3f) (ISNI:0000 0004 1936 8729) 
 Columbia University, Department of Pediatrics, New York, USA (GRID:grid.21729.3f) (ISNI:0000 0004 1936 8729); Columbia University, Institute of Genomic Medicine, New York, USA (GRID:grid.21729.3f) (ISNI:0000 0004 1936 8729) 
 Children’s Hospital of Philadelphia, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, USA (GRID:grid.239552.a) (ISNI:0000 0001 0680 8770); University of Pennsylvania, Department of Bioengineering, Philadelphia, USA (GRID:grid.25879.31) (ISNI:0000 0004 1936 8972) 
 Columbia University, Department of Pediatrics, New York, USA (GRID:grid.21729.3f) (ISNI:0000 0004 1936 8729) 
 Harvard Medical School, Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, USA (GRID:grid.38142.3c) (ISNI:000000041936754X) 
 University of Pennsylvania, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, USA (GRID:grid.25879.31) (ISNI:0000 0004 1936 8972) 
 Children’s Hospital of Philadelphia, Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Philadelphia, USA (GRID:grid.239552.a) (ISNI:0000 0001 0680 8770) 
Pages
333
Publication year
2024
Publication date
Dec 2024
Publisher
Nature Publishing Group
e-ISSN
23986352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
3131662621
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.